

Seminar: Schnee von gestern? 9.April 2024, Wien

Änderungen der Schneedecke in Österreich

Remote sensing of snow cover and its variability in Austria

Juraj Parajka

ÖGH österreichische gesellschaft für hydrologie

Outline

- 1) Mapping snow cover using remote sensing
- 2) Snow cover changes in Danube/Austria

Mapping snow cover using remote sensing

(1) **Optical sensors**: good temporal resolution, medium spatial resolution, problem clouds

(2) Microwave sensors:
Active: very good spatial resolution, wet snow cover signal, dry snow-bare ground the same scatter, low temporal resolution

Passive: coarse spatial resolution, shallow and wet snow difficult to identify in complex terrain

Optical systems	No.ba nds	Pixel size [m]	Tem. res. [days]	Swath [km]	Mission date
MERIS	15	300-1200	<3	1150	2001
MODIS	36	250-1000	Daily	2330	2000
MOS	18	520	<5	200	1996
Landsat(TM, ETM, MSS)	4-7	30-120	<16	185	1972, 1982-1987, 1999
SPOT	4	10-20	<3	60	1986-90; 1993-1998; 2002
Aster	14	15-90	<16	60	1999
AVHRR	6	1100-4000	0.5	2800	1978
AATSR	7	1000	3	512	2000
ATSR	7	1000	3	512	1991
MSG	12	5000	15min.		2008

Microwave systems	Band	Pixel size [m]	Repeat [days]	Swath [km]	Mission date
ASAR	С	150-1000	35	60-100	2001
AMISAR	С	<30	35	100	1991
RADARSAT	С	8-100	24	45-500	1996
JERS-1	L	18	44	75	1992
SIR-C	C,L	25	NA	10-100	1999
X-SAR	Х	10-25	NA	50-100	1999
SSM/I	Passive	25000	<1	1400	1987
SMMR	Passive	25000	<6	780	1978-87
AMSRE	Passive	25000	<2	2330	2002

Snow cover from optical sensors

Snow=high reflectance in the visible and the low reflectance in the short-wave infrared part of the spectrum Clouds = high reflectance in both the visible and the short-wave infrared part of the spectrum

NSDI=(BAND4-BAND6)/(BAND4+BAND6) MODIS: Band 4(841-876nm), Band6 (1628-1652nm)

Vienna Doctoral Programme on Water Resource Systems

MODIS snow cover mapping (Moderate Resolution Imaging Spectroradiometer) Webpage: www.nsidc.org 2 images per day (Terra from 02/2000 und Aqua from 06/2002) Solar Diffuser Door Spatial resolution 500m Thermal Control **Optical sensor** Calibration Port Double-Sided Scan Mirror **Clouds** are problem Cavity

MODIS, 19.3.2003

Example of MODIS (Terra) image for Austria

How much clouds? How accurate? How to reduce clouds?

How much clouds?

How accurate?

(Parajka and Bloschl, 2006, Parajka et al., 2012, Tong et al., 2020)

Mapping accuracy

Confusion matrix	Station snow	Station land	
MODIS snow	A	В	$\mathrm{O}\mathbf{A}_\mathrm{T} = rac{\mathrm{A}+\mathrm{D}}{\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}} ullet 0 100\%$
MODIS land	С	D	

MODIS accuracy in the forest

(Parajka et al., 2012, HESS)

92.7 % (Aqua+Terra) 94.6% (2-day Filter)

Disagreement: patchy snow cover, geolocation error

MODIS accuracy Overall accuracy for cloud-free conditions is very high (97%, Tong et al, 2020), problem is cloud coverage Average cloud coverage >60% (in winter months>80%)

Development of methods for cloud reduction:

- Combination of Terra and Aqua snow cover data
- Spatial filter
- Temporal filter (1-, 3-, 5-, 7-days)
- Snow line method

Combination of Terra and Aqua snow cover data

Land Clouds Snow

Spatio-temporal filtering to reduce clouds

Snowline elevation changes

Snowline changes during events (2000-2015)

Calibration and validation of hydrological/snow models with snow cover data

2003/2004

Snow cover changes in Danube

Snow cover area change in 2001-2022

Snow cover area changes in Austria

Conclusions

- Remote sensing data sets are an important basis for performing comparative hydrology, to generate apriori expectations of dominant processes, to test hydrological models and improve process understanding.
- MODIS provides accurate observations of snow cover at regional scale
- MODIS design life=6 years, now close to end (Dec. 2025?), but alternatives exist (e.g. VIIRS 375m, daily, from 2012)

Recent advances in remote sensing bring new, large and very detailed datasets of terrestrial water cycle, but the further advance should not go at expenses of reducing conventional local measurements

Thank you ...

All the water underground, on the surface, and in the atmosphere amounts to about 332 million cubic miles. That makes a cube with a side of 693 miles

