

Junge Hydrologie Österreichs

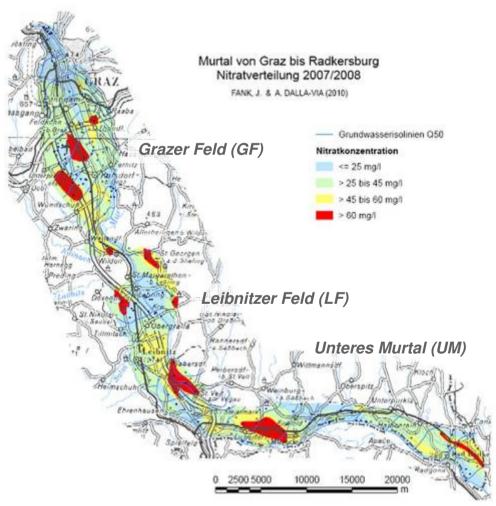
Wien, 11.11.2010

Numerische Modellierung

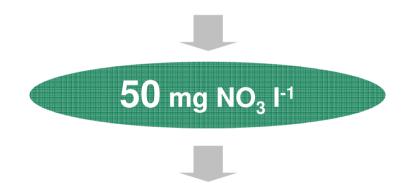
Grundwasserneubildung

Nitratauswaschung

www.joanneum.a



Ubersicht


Motivation > Modelle > Landnutzung > StotraPGen > Ausblick

Motivation Ausgangslage & Tätigkeiten

- GW zur Trinkwasserversorgung (> 1.500 l/s in GF, LF, UM)
- intensive landwirtschaftliche
 Nutzung → N-Dünger

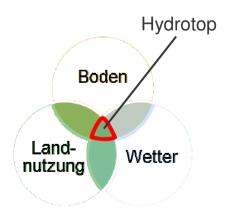
- Regionale Modellierung von ungesättigter und gesättigter Zone
- Ableitung von landw.
 Bewirtschaftungsmaßnahmen

Ubersicht

Motivation > Modelle > Landnutzung > StotraPGen > Ausblick

Simulationsmodelle

Grundwasserneubildung & Nitratauswaschung


Grundwasserneubildung

- SIMWASER (STENITZER, 1988)
- Simulation von Bodenwasserhaushalt und Pflanzenwachstum
- Darcy-Ansatz und Kontinuitätsbedingung

Nitratauswaschung

- STOTRASIM (FEICHTINGER, 1998)
- Stofftransport-Simulationsmodell
- Eindimensionale N- und C-Dynamik in ungesättigter Zone auf Tagesbasis
- Schwerpunkt → Nitratauswaschung ins GW

Modellverbund für **landwirtschaftlich** genutzte Flächen

Ubersicht

Motivation > Modelle > Landnutzung > StotraPGen > Ausblick

Einfluss Landnutzungsdaten

Datenbasis & Verwendung

(Optimaler Ansatz: Feldstück-bezogene Landnutzungsinformation)

Bisheriger Ansatz: INVEKOS (1 Jahr):

50 % Mais

20 % Kürbis

10 % Wintergerste10 % Sommergerste

10 % Winterraps

10-schlägige FF:

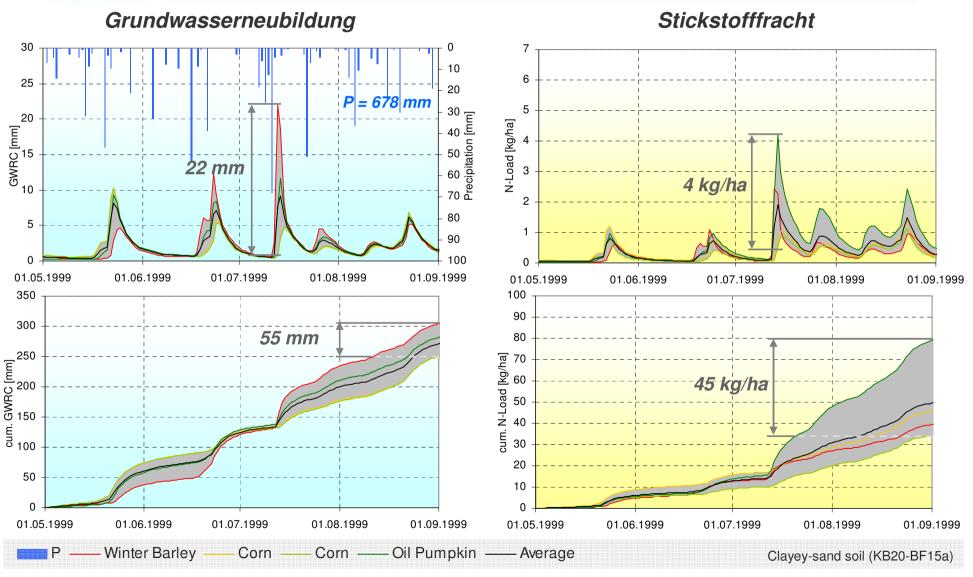
M-M-WG-KÜ-M-SG-WR-M-M-KÜ

- → nicht praxisüblich
- → Man weiß nicht, WAS WANN angebaut wurde:

	P = 803 mm	1043 mm	1097 mm	837 mm
	1997	1998	1999	2000
Bauer A	M	M	WG	KÜ
Bauer B	KÜ⁴	M	M	WG
Bauer C	WG⁴	ΚÜ	M	M
Bauer D	M •	WG	KÜ	M

GWNB & Nitrataustrag

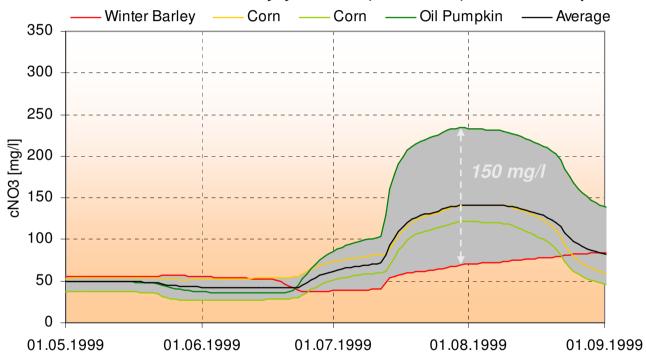
Variantenunterschiede langj. Mittel & Einzeljahre


P [mm]	900	914	823	871	975	906	932	1085	1083	1113	803	1043	1097	837	709	849	676	863	883	839	892	893	908	
GWRC [mm]	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	Average	
Var. A	337	265	145	184	341	351	354	474	485	617	182	464	524	189	186	294	124	185	239	322	282	203	307)
Var. B	337	310	131	162	289	334	300	461	506	638	186	458	510	222	152	293	160	195	232	312	303	229	<i>305</i>	(i.
Var. C	307	330	173	132	275	381	301	440	493	579	186	468	500	245	179	230	156	220	269	271	296	240	303	Range:
Var. D	280	308	153	155	289	364	349	446	464	577	190	457	488	239	193	257	118	179	246	311	231	238	297	J &
Annual Average	315	303	150	158	298	357	326	455	487	603	186	462	506	224	177	268	140	195	246	304	278	227	303	1
Range	57	66	43	52	66	47	54	34	42	62	8	12	36	56	41	64	42	41	37	51	<u>72</u>	37	46	
N-load [kg/ha]	1987	1988	1989	1,000	1001	1992	1993	1004	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	Average	
Var. A	62	38	14	1 990 55	1991	90	78	1994 57	99	77	14	55	82	56	26	107	41	78	42	72	86	58	64	` -
Var. B	69	78	21	40	71	112	88	45	61	103	32	59	76	69	29	90	56	79	77	55	62	65	65	9
Var. C	33	65	26	51	62	102	108		47	60	36	109	57	48		109	43	80	80	60	44	38	62	g 4
Var. D	60	51	27	70	95	71	88	69 83	55	38	20	1109	112	37	30	84	24	75	59	101	64	35	63	Range:
Annual Average	56	58	22	54	86	94	91	63	66	69	25	83	82	53	27	97	41	78	64	72	64	49	63	
Range	36	40	12	30	57	41	30	39	52	<u>64</u>	22	55	55	33	5	25	32	6	38	46	42	31	36	
Trange	30	70	12	30	31	71	30	33	32	<u>0 7</u>	~~	33	33	33	3	25	32	U	30	70	72	31 <u> </u>	30	
cNO ₃ [mg/l]	1987	1988	1989	1990	1991	1992	1 993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	Average	
Var. A	81	63	44	133	154	113	97	53	90	55	33	52	69	131	62	161	147	186	77	99	135	126	92	21
Var. B	90	112	71	110	108	148	130	43	53	71	77	57	66	138	85	137	154	181	148	78	90	126	<i>95</i>	<u>je</u>
Var. C	47	87	67	172	99	119	159	69	42	46	85	103	51	87	75	210	121	162	131	98	65	70	90	Range:
Var. D	95	74	78	200	145	86	112	83	53	29	46	107	102	68	56	145	91	185	105	144	123	65	94	J α̈́
Annual Average	78	84	65	153	127	117	124	62	60	50	60	80	72	106	69	163	128	178	115	105	103	97	93	1
Range	47	48	34	90	55	61	62	40	48	42	51	54	51	70	28	73	64	24	71	66	70	62	<i>55</i>	
5 1																								

Corn Winter Barley Oil Pumpkin

GWNB & Nitrataustrag

Variantenunterschiede auf Tages- & Monatsbasis



NO₃-Konzentration Variantenunterschiede auf **Tages-** & **Monatsbasis**

NO3-concentrations of a clayey-sand-soil (KB20-BF15a) for different crops

Neuer Ansatz:

<u>Mittelwert</u> der Varianten → <u>bestmögliches Ergebnis</u> für reg. Modellierung auf Tagesbasis

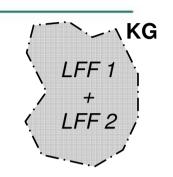
Ubersicht

Motivation > Modelle > Landnutzung > **StotraPGen** > Ausblick

StotraPGen Stotrasim Projekt Generator

- Pre- und Postprocessing für SIMWASER/STOTRASIM
- Automatisierte Anwendung von SIMWASER/STOTRASIM auf regionaler Ebene
- Mittelwertbildung der Varianten
- Stochastischer Ansatz zur besseren Berücksichtigung von Landnutzungsdaten

Funktionen:


- FF-Rotation
- Modellzeitraum definieren
- Optimierung FF-Anteile
- SIMWASER/STOTRASIM-Berechnung
- Ergebnismixer
- Visualisierung

FF-Rotation Erstellen der FF-Varianten

Vorgabe:

- Definition von Leitfruchtfolgen (z.B. M-M-WG-KÜ und M-SG-WR)
- Bewirtschaftungsdaten (Anbau, Ernte, Bodenbearbeitung, Düngemengen und Düngezeitpunkte)

LFF 1	Jahr 1	Jahr 2	Jahr 3	Jahr 4
Var. A	M	M	WG	KÜ
Var. B	ΚÜ	M	М	WG
Var. C	WG	KÜ	M	M
Var. D	M	WG	ΚÜ	M

StotraPGen

LFF 2	Jahr 1	Jahr 2	Jahr 3
Var. A	M	SG	WR
Var. B	WR	M	SG
Var. C	SG	WR	M

StotraPGen

Modellzeitraum definieren

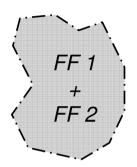
LFFs werden auf Berechnungszeitraum ausgeweitet

Vorgabe:

Definition des Modellzeitraums (z.B. 2002-2010)

FF 1	2002	2003	2004	2005	2006	2007	2008	2009	2010
Var. A	M	M	WG	KÜ	M	M	WG	KÜ	M
Var. B	ΚÜ	M	M	WG	ΚÜ	M	M	WG	ΚÜ
Var. C	WG	KÜ	M	M	WG	KÜ	M	M	WG
Var. D	М	WG	ΚÜ	M	M	WG	ΚÜ	M	М

StotraPGen


FF 2	2002	2003	2004	2005	2006	2007	2008	2009	2010
Var. A	M	SG	WR	M	SG	WR	M	SG	WR
Var. B	WR	M	SG	WR	M	SG	WR	M	SG
Var. C	SG	WR	M	SG	WR	M	SG	WR	M

StotraPGen
INNOVATION aus TRADITION

Optimierung FF-Anteile

Finden von optimalen FF-Mischungsverhältnissen

Räumliche Verteilung?

Vorgabe:

 Prozentuelle Landnutzungsverteilung (INVEKOS-Daten für KGs)

Ergebnis:

 Optimale prozentuelle Zusammensetzung der FF

M CC MD

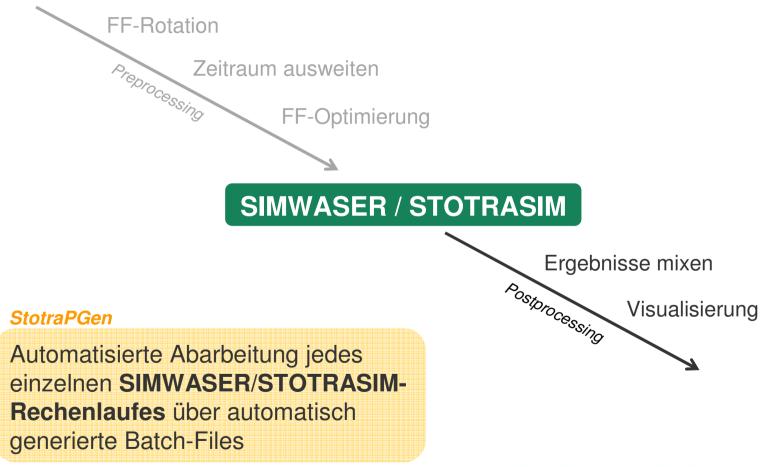
• z.B.:
$$\left(FF 1 \rightarrow 76\% \right)$$

 $FF 2 \rightarrow 24\%$

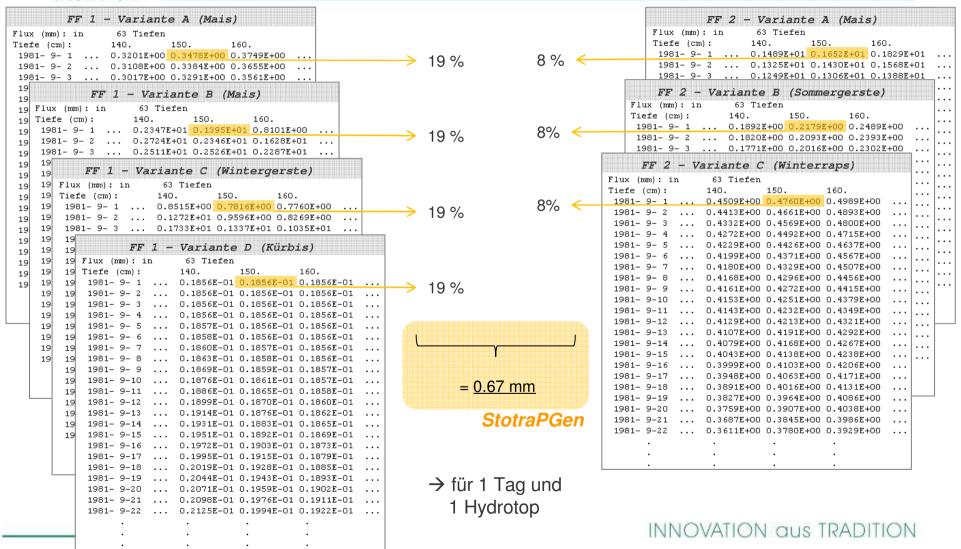
MANA MACKÜ

WI-WI-WG-KU	W-SG-WR
FF 1	FF 2
A 19%	A 8%
В 19%	B 8%
C 19 %	C 8%
D 19 %	

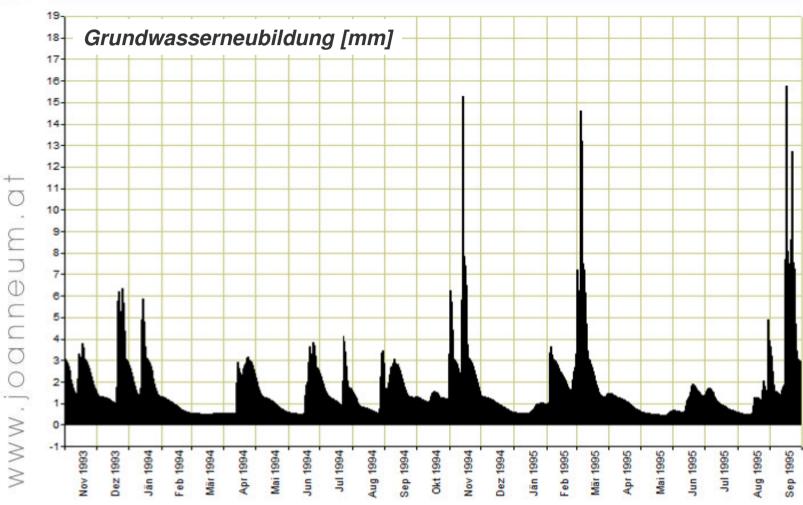
StotraPGen


<u>File Edit S</u> earch <u>V</u> i	ew <u>T</u> ools [<u>Macros</u> <u>C</u> onfigure	<u>W</u> indow <u>H</u> elp	_ 0
	À 💖 %			Q‡ 强 • 110
KG	Jahr	ID	Kultur	Anteil
FFM-Alt-66103	2002	3	Wintergerste	4
FFM-Alt-66103	2003	3	Wintergerste	1
FFM-Alt-66103	2004	3	Wintergerste	6
FFM-Alt-66103	2005	3	Wintergerste	3
FFM-Alt-66103	2006	3	Wintergerste	7
FFM-Alt-66103	2007	3	Wintergerste	2
FFM-Alt-66103	2008	3	Wintergerste	9
FFM-Alt-66103	2009	3	Wintergerste	18
FFM-Alt-66103	2010	3	Wintergerste	6
FFM-Alt-66103	2002	8	Mais300	48
FFM-Alt-66103	2003	8	Mais300	52
FFM-Alt-66103	2004	8	Mais300	55
FFM-Alt-66103	2005	8	Mais300	49
FFM-Alt-66103	2006	8	Mais300	49
FFM-Alt-66103	2007	8	Mais300	52
FFM-Alt-66103	2008	8	Mais300	62
FFM-Alt-66103	2009	8	Mais300	50
FFM-Alt-66103	2010	8	Mais300	57
FFM-Alt-66103	2002	18	Winterraps	0
FFM-Alt-66103	2003	18	Winterraps	3
FFM-Alt-66103	2004	18	Winterraps	0
FFM-Alt-66103	2005	18	Winterraps	0
FFM-Alt-66103	2006	18	Winterraps	1
FFM-Alt-66103	2007	18	Winterraps	0
FFM-Alt-66103	2008	18	Winterraps	0
FFM-Alt-66103	2009	18	Winterraps	0
FFM-Alt-66103	2010	18	Winterraps	0
FFM-Alt-66103	2002	42	Kürbis	13
FFM-Alt-66103	2003	42	Kürbis	13
FFM-Alt-66103	2004	42	Kürbis	9
FFM_11+_66103	2005	42	Viirhie	20

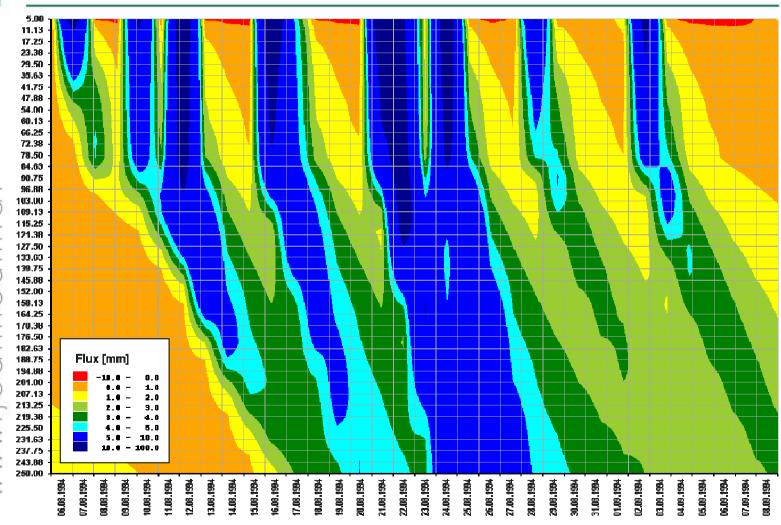
SIMWASER / STOTRASIM


Berechnung von GWNB & Nitratauswaschung

Ergebnismixer


Einzelrechnungen prozentuell gewichten

Visualisierung


Auswertung & Interpretation der Ergebnisse

Visualisierung

Auswertung & Interpretation der Ergebnisse

ibersicht

Motivation > Modelle > Landnutzung > StotraPGen > A USDICK

Ausblick Aufbauende Projekte und Ziele

- Sequentielle Kopplung STOTRASIM mit FEFLOW
 - Interface-Modul → FE werden STOTRASIM-Ergebnisse zugewiesen
 - ev. iterativer Ansatz zwischen STOTRASIM und FEFLOW
- Ökonomische Bewertung von landwirtschaftlichen Bewirtschaftungsmaßnahmen
 - Westliches Leibnitzer Feld
 - Ziel: Bewirtschaftungsform, die ökologischen wie ökonomischen Anforderungen entspricht
- Bodenhydrologische Modellierung von Klimaszenarien
 - Westliches Leibnitzer Feld

Numerische Modellierung von GWNB und Nitratauswaschung

www.joanneum.at

Gernot Klammler
JOANNEUM RESEARCH Graz
RESOURCES - Institut für Wasser,
Energie und Nachhaltigkeit
Wasser Ressourcen Management
Elisabethstraße 16/II
8010 Graz
P +43 316 876 1492
F +43 316 876 9 1492

gernot.klammler@joanneum.at